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A study is made of the stability of a plane layer of gravitating fluid 
with exponentially decaying density within a magnetic field with respect 
to surface disturbances of periodic character. 

A layer of gravitating fluid of thickness 2h and density 

P = p. exp b-- BYI (P > 0) 

is imagined to be in equilibrium in a field of natural gravitational 
force under the influence of an internal uniform magnetic field directed 
along the x-axis. It is assumed that the xz plane coincides with the 
axis of synvnetry of the layer and the y-axis is directed vertically up- 
wards. The y in Expression (1) should be taken as the absolute value of 

Y* 

‘lhe equation of the disturbed layer surface, in the chosen coordinate 

system, is of the form 

y = h + 8y = h +acoskx (2) 

Stability investigations of this system in terms of disturbances of 
type (2) are carried out on an energy basis using the following system 
of equations: 

v=u=o, v2 V = 4nGp (3) 

NY / at = & v=H + rot (v x H), VH=O 

&)/at + (v.V)p = 0, vv=o (5) 
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In these expressions V and II are potentials within and outside the 

medium respectively, G is the gravitational constant, LJ the velocity, cr- 

is the electrical conductivity of the medium; Equations (5) are derived 

from the equation of continuity in terms of a proposed model or repre- 

sentation of a gravitating fluid [l]. The boundary conditions for equa- 

tions (3) to (5) are 

0, (v),=h - (u),=h = 0, 

wv=o = 0, (v&,=/, = $+ cos kx 

In the undisturbed state 6y = 0, u = 0 and Equations (4) and (5) are 

satisfied, whilst the solutions to (3), taking into account (1) and (6) 

take the following form 

Y 0 = 9 (f+U + py _ I), U. = F (1 - e-oh) y + Co (8) 

In this case 

c 0 = $$+(I + fjh_-ePh) 

In the limiting case when t3 + 0 a potential expression is obtained 

for a plane layer (of constant density pb) from (8) [2,3]. 

The basic system of Equations (3) to (5) has a solution for the equi- 

librium condition so that a solution describing a condition of small 

disturbances can be 

P = poe-Pu + 433, 

Here 6 pls is the 

represented thus 

V = V, + W, u=u,+su,, H = Ho + BH 

v = - grad cp (x, y) (IO) 

change in density within the medium caused by mass 

redistribution due to the deformation of the free surface of the layer; 

the appearance of such a change is caused by the undisturbed layer 

density gradient so that 8pp + 0 when /3 + 0 and the function +(x, y) 

satisfies the Laplace equation. 

A solution of 4(x, y) satisfying conditions (7) is of the form 

cp(x, y) = -$g 3 coskx 

The velocity distribution consistent with this is 

vx = - $ G sin kx, 
da sinh kq 

vy =dt ti kh 
A cos kx 

(11) 

(12) 
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If we neglect products of the type usa Sp#3x and v~~~P~/a~, using 
(12), we can reduce (5) to the following form 

Remembering that a = 0 when t = 0 we find 

The quantity 6pS.tskes on positive 
cos kx. Within the framework of linear 
6pa<< p should'he fulfilled, which is 

substituting into the basic inequality 
from (1) and (131. 

or negative values depending on 
theory, therefore, the condition 
transformed into a@<< 1 after 
of the corresponding expressions 

The change in potential within and outside the medium will satisfy 
the following equations respectively 

Note that 

when-Y$y<Y 

when Y>y>Y 

Therefore the particular integreil of (141 can be represented as s 

Fourier integral. Put 

Thus on substituting (15) in (14) we arrive at the following relation- 
ship between the Fourier components 

If follows from (15) and (16) 
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(47) 

where 

R = _ “GpOaB -cosx 
sd kh , k,=k-pp, k2 = -k--p 

In view of the symnetry of the problem with respect to the y = 0 

plane, the function 6pB may be considered an even function by taking, 

in Expression (17) the absolute value of the variable r, 

Therefore 

6V (x, y) = 2Rr eaT [ekls - ek2+] cos a (z - y) dz 

0 0 

If we integrate with respect to r to an accuracy first order in ampli- 

tude we arrive at 

co 03 

s kl cos ay dy a cos ay sin ah da kaa cos ay cos ah du - 
(k2 + aa) (k2 + al) - S[ (ka + aa) (kza + a”) ’ (ka + aa) (kaa + a%) I 

ek,h + 

0 0 

+~(ka+fa2)(kaa-aa) 
k cosayda 

0 

'Ihe integrals obtained here are easy to transform into Laplace inte- 

grals, which, on integrating, lead to a particular integral of (14) in 

the form 

(jV =2+Qa 
1 dkh K 

1--)$coshlcy--+ e~-$!$!&,s~z 

It is evident that the general solution of Equation (14) which satis- 

fies the first boundary condition (6) will be 

aV = WI +B cash ky cos kx 

We will take the solution for &!I in this form 

6lJ = Ble-k(u--h) cos kx 

By using the second and third boundary conditions in (6) the values 
of the unknown constants B and B, can be calculated. 
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In the following text the calculation of the change in potential 
energy will be carried out with the help of the expression for the po- 
tential within the medium 

4nCap,e-Ph cash kky 
cos kx + 

2pe+ 
cash ky- ____ pa - 4k2 + 

&+--PM 
- - 
p - 2k 

G-j cos kx (18) 

'Ibe chmge in potential energy per unit length can be calculated from 
Formula (2) 

i 

6= apoexp[- BY] coskx 

Y=h+acoskx, h=2n/k 

Substitute into this Expression (18) for V and integrate as far as 
second order terms with respect to amplitude, and we arrive at 

6Q = nGa2hpo2e-2” 
e” (2 - n) - 2 

- 
n 2 (1 t tanh 2) + 

n + 22 - ne-” + 22 coah -j- n rinh~z - nen-* z = kh 
+ 22 (n + 2t) ti z (23 - 4Z~)~tclnt,Z n = flh (19) 

We proceed by integrating the first equation of (4) (assmning the 
medium to have infinite electrical conductivity), and, bearing in mind 

the velocity distribution (12), we 
obtain for the intensity of the mag- 
netic field 

h +-kH,,aacoskx 

h, = - kH,,assin kx 

‘Ihus the variation in magnetic 
energy which passes through unit 
length of disturbed layer will be 

aaH& CO& z 
&M= 

16nh ml 2 (20) 

Fig. 1. 

On adding (19) and (20) we obtain the total change in energy thus 

6E = SQ f 8M = nGhp,,2a2FS,, (z) (W 

where 
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+ 

+2ZcorhZ+n~z_n~n-z 

( n2 - 49) rinb z 

The total change in energy, therefore, depends on z, n and h,. Observe 
that the variation in gravitational energy depends only on n. Figure 1 
shows the relation FSn(z) =6 E/trGhpb2a2 as a function of Z, according 
to (21), for various values of n, when the magnetic field H, = 0. 

In the case where there is no magnetic field, for n = 0 (p = pb) and 
for n = 1 (p = pb exp (-y/h)), function F,,(z), and thus also 6fl, take 

on both positive and negative values. For a definite value z = L* (A = 
A+ =-2n h/z*) the change in gravitational energy becomes zero (an= 0). 

'Ihis value Z* divides the region into stable aud unstable harmonics be- 
cause 6a< OwhenX<h* and 6Q> OwhenX> A 

l ' 

When n > 2, 6fi< 0 for all values of 2 or A. lhe configuration, 
therefore, of a type of plane layer whose density varies as p = p0 exp 
(-:ny/h) where n > 2, is extremely unstable and probably does not exist 
in nature. 

Magnetic energy changes are positive for all values of A; the in- 
fluence of the magnetic field therefore has a stabilising effect. An in- 
crease in intensity of the magnetic field means that the value of z at 
which the total energy change equals zero @E= 0) is reduced, and in 
this way the region of unstable harmonics is cut down. lhe most unstable 
development with n 2 2 in the presence of a magnetic field can turn out 
to be stable within a particular frequency band. 

It is apparent therefore that the equilibrium condition of our system 
as a function of h, H,, A may be both stable and unstable. However there 
may exist a magnetic field which can wholly suppress the development of 
unstable harmonics. 'Ihe intensity of such a magnetic field is determined 
from the condition 6E =-0 and depends on z and n 

Ho2>Hs2 tanh Ze-2n 
n+ 2t-r~~~~ 

z (1 i,., z) - e"(2Pnn)-2 f_ 22 (n + 22)tlUlhZ _ 

_Zz~rhz+nrinh~-ne~-~ 

sinb 2 (n2 - 4Z2) 

As a rule the instability is not the same for all values of the 
length X which belong to the region of unstable harmonics. 

l'he instability of the system is a maximum for a given value As and 
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the amplitude grows more rapidly, In order to find the maxim unstable 
harmonic it is essential to obtain an equation of motion with the help of 
the Lagrange function, 

‘Ihe kinetic energy is 

If we substitute expressions for vrx and vY according to (12) into 
this formula, we obtain on integrat-ing 

On setting up a Lagrange function using (21) and 
ing, we arrive at 

sinh2 z {4z2 - n”) Fish (2) 
& JnGp, _a a 

e f2z sin& %+Itco&2z~-n 

lb solution to this equation is 

a = c exp (&,P,, (z) tj 

where 

(221, and integrat- 

ZZZ 0 

(c = cmlst) 

Figures 2 and 3 show graphs of the function f =P ~2(z1/4nCp0 as a 
function of z for several definite values of n a$ H,?flI. When P,a2(z)/ 
4nG pa < 0 we have a stable condition because this is conducive to 

Ffg. 2, Fig. 3. 

periodic variation of amplitude with time. On the other hand the ampli- 
tude increases exponentially and the system breaks down into separate 
parts. The length of these parts along the x-axis is of the order 
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X, = 2n h/zl where zr(zO 5, zl, .zg) are values of z at which P .(z) has 
a maximum and the amplitude increases the most rapidly of all C4,2]. 

The quantity T * = PLhl(zm) is usually understood to be the relaxation 
time necessary for the unstable condition to develop. 

‘lhe results of the present paper are more general. For /3+ 0 the re- 
sults published in [2,3] can be obtained, relating to the stability prob- 
lems of a constant density plane layer. 

The authors are indebted to A. Vlasov for discussions of the results 
obtained. 
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